项目名称: 金属超薄膜光学性质及量子尺寸效应的研究

项目编号: No.11204175

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 白旭旭

作者单位: 上海交通大学

项目金额: 28万元

中文摘要: 随着器件的尺寸越来越趋近于金属中电子的本征费米波长,低维结构中量子尺寸效应对器件性能的影响更加突出。器件的表面功函数、电导、超导临界温度、表面化学活性等,都将受到自由电子能量量子化的影响。贵金属超薄膜结构因其丰富的表面等离激元特性而受到人们的广泛关注。表面等离激元的共振频率及诱导的局域电磁场随着金属超薄膜的厚度和周围介质显著变化。然而,低维结构的尺寸和形状控制涉及到复杂的动力学和热力学问题, 精确的成核和生长机制仍然没有弄明白。本项目希望能通过对表面等离激元的重点研究,结合现有原子分子的量子操纵技术来探索介观尺度下的新效应。将在自主搭建的原位超高真空测量系统研究金属超薄膜的光学性质随薄膜厚度的变化,弄清量子效应和薄膜光学性质间的联系。本项目的开展可能开辟用量子效应调节材料光学性质的一个新领域,从而发现或者找到一些有特殊光学性质的超薄膜材料,为开发新型光学器件提供新思路和新材料。

中文关键词: 量子尺寸效应;拓扑绝缘体;金属超薄膜;原位光谱;分子束外延

英文摘要: As the size of the devices is close to the electron intrinsic Fermi wavelength, the quantum size effect becomes more prominent in low-dimensional structures. The surface work function, conductivity, the superconducting critical temperature, and the surface chemical activity, will be subject to the influence of the free electron energy quantization. Ultra-thin Nobel metal films have gained wide spread interest for their strong surface plamon (SP). The SP resonance frequency and induced electric field enhancement depend strongly on the thickness and the surrounding dielectric environment. However, controlling of the size and the shape of low-dimensional structures, which related to the complex kinetics and thermodynamics is still not clear. In this project, we hope explore the effect of mesoscopic scale by focus our study on SP, and combined with the existing atomic and molecular quantum manipulation techniques. The optical properties of ultra-thin metal films with various thickness will be measured on self-built in-situ ultrahigh vacuum measurement system, to ascertain the relationship between quantum effects and film optical properties. The performance of this project may open up a new field of quantum effects to adjust the optical properties of materials, thereby, invent or find some special optical properties

英文关键词: the quantun size effect;topological insulator;ultra-thin metal film;in-situ spectrascopy;molecular bean epitaxy

成为VIP会员查看完整内容
0

相关内容

【经典书】图论,322页pdf
专知会员服务
120+阅读 · 2021年10月14日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
46+阅读 · 2019年9月24日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
2+阅读 · 2022年4月19日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员