Adversarial Imitation Learning (AIL) is a class of popular state-of-the-art Imitation Learning algorithms commonly used in robotics. In AIL, an artificial adversary's misclassification is used as a reward signal that is optimized by any standard Reinforcement Learning (RL) algorithm. Unlike most RL settings, the reward in AIL is $differentiable$ but current model-free RL algorithms do not make use of this property to train a policy. The reward is AIL is also shaped since it comes from an adversary. We leverage the differentiability property of the shaped AIL reward function and formulate a class of Actor Residual Critic (ARC) RL algorithms. ARC algorithms draw a parallel to the standard Actor-Critic (AC) algorithms in RL literature and uses a residual critic, $C$ function (instead of the standard $Q$ function) to approximate only the discounted future return (excluding the immediate reward). ARC algorithms have similar convergence properties as the standard AC algorithms with the additional advantage that the gradient through the immediate reward is exact. For the discrete (tabular) case with finite states, actions, and known dynamics, we prove that policy iteration with $C$ function converges to an optimal policy. In the continuous case with function approximation and unknown dynamics, we experimentally show that ARC aided AIL outperforms standard AIL in simulated continuous-control and real robotic manipulation tasks. ARC algorithms are simple to implement and can be incorporated into any existing AIL implementation with an AC algorithm. Video and link to code are available at: https://sites.google.com/view/actor-residual-critic.


翻译:ADIL (AIL) 是机器人通常使用的一种流行的、 最高级的智能学习算法。 在 AIL 中, 人为对手的错误分类被使用为一种奖励信号, 任何标准的SEAREEAR( RL) 算法都会优化。 与大多数 RL 设置不同, AIL 的奖赏是美元可差别的, 但目前没有模型的 RL 算法并不使用此属性来培训政策。 奖赏是 AIL 的简单自动算法。 我们利用了 自动智能学习学习算法的可变性属性, 并开发了一种ARC( ARC) 运算法的分类法。 ARC 算法与一个标准的ALA( ARC) 相匹配。 使用标准的ALA( ARC) 匹配算法, 并使用一个常规的 ALILA( ) 算法, 运行一个直径直径直径直径比的 ALLA( ) 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月2日
Arxiv
12+阅读 · 2020年12月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员