Automatic segmentation of lung lesions associated with COVID-19 in CT images requires large amount of annotated volumes. Annotations mandate expert knowledge and are time-intensive to obtain through fully manual segmentation methods. Additionally, lung lesions have large inter-patient variations, with some pathologies having similar visual appearance as healthy lung tissues. This poses a challenge when applying existing semi-automatic interactive segmentation techniques for data labelling. To address these challenges, we propose an efficient convolutional neural networks (CNNs) that can be learned online while the annotator provides scribble-based interaction. To accelerate learning from only the samples labelled through user-interactions, a patch-based approach is used for training the network. Moreover, we use weighted cross-entropy loss to address the class imbalance that may result from user-interactions. During online inference, the learned network is applied to the whole input volume using a fully convolutional approach. We compare our proposed method with state-of-the-art using synthetic scribbles and show that it outperforms existing methods on the task of annotating lung lesions associated with COVID-19, achieving 16% higher Dice score while reducing execution time by 3$\times$ and requiring 9000 lesser scribbles-based labelled voxels. Due to the online learning aspect, our approach adapts quickly to user input, resulting in high quality segmentation labels. Source code for ECONet is available at: https://github.com/masadcv/ECONet-MONAILabel
翻译:CT 图像中与COVID-19 相关的肺部损伤的自动分解需要大量附加说明的量; 说明性专家知识,而且通过人工分解方法获得的样本需要时间密集, 肺部损伤具有很大的病人间变异, 有些病理的视觉外观与健康的肺部组织相似。 在应用现有的半自动互动分解技术进行数据标签时, 这会构成挑战。 为了应对这些挑战, 我们建议建立一个高效的神经神经神经网络(CNNs), 可以在网上学习, 而说明者则提供基于编译的相互作用。 为了加快从仅通过用户间互动标出样本的学习, 使用补丁法的方法对网络进行培训。 此外, 我们使用加权的交叉机体损伤损失来解决因用户间反应而可能造成的阶级不平衡。 在网上推断中, 学习的网络应用到整个输入量, 使用合成的分辨码将我们的拟议方法与最新工艺方法进行比较, 使用合成的分辨和显示它超越了在使用用户间隔热分辨数据/网络进行高分解的当前的方法。 需要降低用户间分解的分子分解值, CD- 19的分解的分解 。