Deep learning classifiers are assisting humans in making decisions and hence the user's trust in these models is of paramount importance. Trust is often a function of constant behavior. From an AI model perspective it means given the same input the user would expect the same output, especially for correct outputs, or in other words consistently correct outputs. This paper studies a model behavior in the context of periodic retraining of deployed models where the outputs from successive generations of the models might not agree on the correct labels assigned to the same input. We formally define consistency and correct-consistency of a learning model. We prove that consistency and correct-consistency of an ensemble learner is not less than the average consistency and correct-consistency of individual learners and correct-consistency can be improved with a probability by combining learners with accuracy not less than the average accuracy of ensemble component learners. To validate the theory using three datasets and two state-of-the-art deep learning classifiers we also propose an efficient dynamic snapshot ensemble method and demonstrate its value.
翻译:深层次的学习分类者正在帮助人类做出决策,因此用户对这些模型的信任至关重要。 信任往往是常态行为的一个函数。 从AI模型的角度来看,这意味着根据同样的输入,用户期望同样的产出,特别是正确的产出,或换句话说一贯正确的产出。 本文研究的是,在对已部署模型进行定期再培训的背景下的一种示范行为,即这些模型的代代代相传的产出可能无法就分配给同一投入的正确标签达成一致。 我们正式界定了学习模型的一致性和正确的一致性。 我们证明,一个共同学习者的连贯性和正确的一致性不低于个别学习者的平均一致性和正确一致性,而正确的一致性可以通过将学习者与不低于共同学习组成部分学习者平均准确性的结合来提高概率。 使用三个数据集和两个最先进的深层学习分类者来验证理论,我们还提出一个高效的动态即时速组合方法,并展示其价值。