Generative Adversarial Networks (GAN) offer a promising approach for Neural Machine Translation (NMT). However, feeding multiple morphologically languages into a single model during training reduces the NMT's performance. In GAN, similar to bilingual models, multilingual NMT only considers one reference translation for each sentence during model training. This single reference translation limits the GAN model from learning sufficient information about the source sentence representation. Thus, in this article, we propose Denoising Adversarial Auto-encoder-based Sentence Interpolation (DAASI) approach to perform sentence interpolation by learning the intermediate latent representation of the source and target sentences of multilingual language pairs. Apart from latent representation, we also use the Wasserstein-GAN approach for the multilingual NMT model by incorporating the model generated sentences of multiple languages for reward computation. This computed reward optimizes the performance of the GAN-based multilingual model in an effective manner. We demonstrate the experiments on low-resource language pairs and find that our approach outperforms the existing state-of-the-art approaches for multilingual NMT with a performance gain of up to 4 BLEU points. Moreover, we use our trained model on zero-shot language pairs under an unsupervised scenario and show the robustness of the proposed approach.
翻译:生成式对抗网络 (GAN) 为神经机器翻译 (NMT) 提供了一种有前途的方法。然而,在训练期间将多个形态语言输入单个模型会降低 NMT 的性能。在 GAN 中,类似于双语模型,多语言 NMT 在模型训练过程中仅考虑每个句子的一个参考翻译。这个单一的参考翻译限制了 GAN 模型学习关于源句子表示的足够信息。因此,在本文中,我们提出了基于去噪对抗自编码器的句子插值 (DAASI) 方法,通过学习多语言语言对的源句子和目标句子的中间潜在表示进行句子插值。除了潜在表示,我们还使用 Wasserstein-GAN 方法对多语言 NMT 模型进行优化,通过将多个语言的模型生成句子与奖励计算结合起来。这个计算奖励可以有效地优化 GAN 的多语言模型性能。我们证明了在低资源语言对上的实验中,我们的方法优于现有的多语言 NMT 方法,性能提高了高达4个 BLEU 分数。此外,我们将训练好的模型应用在无监督的情况下进行零-shot语言对,展示了所提出方法的鲁棒性。