In this paper, we address the problem of sampling-based motion planning under motion and measurement uncertainty with probabilistic guarantees. We generalize traditional sampling-based tree-based motion planning algorithms for deterministic systems and propose belief-$\mathcal{A}$, a framework that extends any kinodynamical tree-based planner to the belief space for linear (or linearizable) systems. We introduce appropriate sampling techniques and distance metrics for the belief space that preserve the probabilistic completeness and asymptotic optimality properties of the underlying planner. We demonstrate the efficacy of our approach for finding safe low-cost paths efficiently and asymptotically optimally in simulation, for both holonomic and non-holonomic systems.
翻译:在本文中,我们用概率保障来解决在运动和测量不确定性下以抽样为基础的运动规划问题; 我们普遍采用传统的基于取样的基于树的确定性系统运动规划算法,并提议一个将任何基于树木的动力规划师扩展到线性(或可线性)系统的信仰空间的框架,即信仰-$\mathcal{A}$; 我们采用适当的采样技术和距离测量尺度,用于维护基础规划员的概率完整性和无症状的最佳性; 我们展示了我们在模拟中有效找到安全的低成本道路的方法的功效,在模拟中为holoomic 和非holoomic 系统提供了最佳的无症状的方法。