In this paper, the cooperative edge caching problem in fog radio access networks (F-RANs) is investigated. To minimize the content transmission delay, we formulate the cooperative caching optimization problem to find the globally optimal caching strategy.By considering the non-deterministic polynomial hard (NP-hard) property of this problem, a Multi Agent Reinforcement Learning (MARL)-based cooperative caching scheme is proposed.Our proposed scheme applies double deep Q-network (DDQN) in every fog access point (F-AP), and introduces the communication process in multi-agent system. Every F-AP records the historical caching strategies of its associated F-APs as the observations of communication procedure.By exchanging the observations, F-APs can leverage the cooperation and make the globally optimal caching strategy.Simulation results show that the proposed MARL-based cooperative caching scheme has remarkable performance compared with the benchmark schemes in minimizing the content transmission delay.
翻译:本文对雾无线电接入网络(F-RANs)中的合作边缘缓冲问题进行了调查。为尽量减少内容传输延迟,我们制定了合作缓冲优化问题,以找到全球最佳缓冲战略。考虑到这一问题的非决定性多元硬性(NP-硬性)特性,提出了基于多剂强化学习(MARL)的合作缓冲计划。我们提出的计划在每个雾接入点(F-AP)适用双深Q网络(DDQN),并在多试剂系统中引入通信进程。每个F-AP都将其相关的F-AP的历史缓冲战略记录为通信程序的观察。F-APs通过交换观察,可以利用合作,制定全球最佳缓冲战略。模拟结果显示,拟议的MARL合作缓冲计划与尽量减少内容传输延迟的基准计划相比,业绩显著。