Context plays a significant role in the generation of motion for dynamic agents in interactive environments. This work proposes a modular method that utilises a learned model of the environment for motion prediction. This modularity explicitly allows for unsupervised adaptation of trajectory prediction models to unseen environments and new tasks by relying on unlabelled image data only. We model both the spatial and dynamic aspects of a given environment alongside the per agent motions. This results in more informed motion prediction and allows for performance comparable to the state-of-the-art. We highlight the model's prediction capability using a benchmark pedestrian prediction problem and a robot manipulation task and show that we can transfer the predictor across these tasks in a completely unsupervised way. The proposed approach allows for robust and label efficient forward modelling, and relaxes the need for full model re-training in new environments.


翻译:在互动环境中,环境在产生动态物剂的运动中起着重要作用。 这项工作提出了一个模块化方法, 利用一个学习的环境模型来进行运动预测。 这种模块化方法明确允许将轨迹预测模型不经监督地根据无形环境和新任务进行调整, 仅依靠未贴标签的图像数据。 我们将特定环境的空间和动态方面与每个物剂的动作进行模拟, 从而产生更知情的运动预测, 并允许与最新工艺相比的性能。 我们用基准行人预测问题和机器人操纵任务来突出模型的预测能力, 并表明我们可以以完全不受监督的方式将预测器传输到这些任务之间。 拟议的方法允许以稳健和贴上高效的前方建模, 并放松在新环境中全面进行模型再培训的必要性 。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月1日
Arxiv
6+阅读 · 2018年6月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员