This paper presents a scalable deep learning approach for short-term traffic prediction based on historical traffic data in a vehicular road network. Capturing the spatio-temporal relationship of the big data often requires a significant amount of computational burden or an ad-hoc design aiming for a specific type of road network. To tackle the problem, we combine a road network graph with recurrent neural networks (RNNs) to construct a structural RNN (SRNN). The SRNN employs a spatio-temporal graph to infer the interaction between adjacent road segments as well as the temporal dynamics of the time series data. The model is scalable thanks to two key aspects. First, the proposed SRNN architecture is built by using the semantic similarity of the spatio-temporal dynamic interactions of all segments. Second, we design the architecture to deal with fixed-length tensors regardless of the graph topology. With the real traffic speed data measured in the city of Santander, we demonstrate the proposed SRNN outperforms the image-based approaches using the capsule network (CapsNet) by 14.1% and the convolutional neural network (CNN) by 5.87%, respectively, in terms of root mean squared error (RMSE). Moreover, we show that the proposed model is scalable. The SRNN model trained with data of a road network is able to predict traffic speed of different road networks, with the fixed number of parameters to train.
翻译:本文根据车辆公路网的历史交通数据,为短期交通预测提供了一种可伸缩的深层次学习方法。 获取海量数据的时空关系往往需要大量的计算负担或针对特定类型公路网的临时性设计。 为了解决这个问题,我们将公路网络图与经常性神经网络(RNN)相结合,以建立一个结构性 RNN(SRNNN) 。 SRNN使用一个空洞时空图,以推断相邻路段之间的相互作用以及时间序列数据的时间动态。 该模型由于两个关键方面而可缩放。 首先,拟议的SRNN架构的构建方式是使用各部分公路网络的语义性相似性。 第二,我们设计一个结构,处理固定长的电压,而不论图形表层学。 由桑坦德市测量的实际交通速度模型数据,我们用胶囊固定网络(CapsNet)比基于图像的方法(Capsalalalal)的参数差。 以14.1%的公路网的准确性网络(Caploveal ) 和以我们所培训的轨道的直径路段值显示的网络(RMRM)分别以14. brealm. 1和正值表示的路径值显示的路径数据。