Modern computer hardware supports low- and mixed-precision arithmetic for enhanced computational efficiency. In practical predictive modeling, however, it becomes vital to quantify the uncertainty due to rounding along with other sources of uncertainty (such as measurement, sampling, and numerical discretization) to ensure efficiency gains do not compromise accuracy. Higham and Mary [1] showed that modeling rounding errors as zero-mean independent random variables yields a problem size-dependent constant, $\tilde{\gamma}_n \propto \sqrt{n}$, which scales more slowly than in traditional deterministic analysis. We propose a novel variance-informed probabilistic rounding error analysis, modeling rounding errors as bounded, independent, and identically distributed (i.i.d.) random variables. This yields a new constant $\hat{\gamma}_n$, dependent on the mean, variance, and bounds of the rounding error distribution. We rigorously show that $\hat{\gamma}_n \propto \sqrt{n}$ using statistical properties of rounding errors, without ad-hoc assumptions, as in Higham and Mary. This new constant increases gradually with problem size and can improve the rounding error estimates for large arithmetic operations performed at low precision by up to six orders of magnitude. We conduct numerical experiments on random vector dot products, matrix-vector multiplication, a linear system solution, and a stochastic boundary value problem. We show that quantifying rounding uncertainty along with traditional sources (numerical discretization, sampling, parameters) enables a more efficient allocation of computational resources, thereby balancing computational efficiency with predictive accuracy. This study is a step towards a comprehensive mixed-precision approach that improves model reliability and enables budgeting of computational resources in predictive modeling and decision-making.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员