Mathematical analysis with numerical application of the newly formulated fractional version of the Adams-Bashforth method using the Atangana-Baleanu derivative which has nonlocal and nonsingular properties is considered in this paper. We adopt the fixed point theory and approximation method to prove the existence and uniqueness of the solution via general two-component time-fractional differential equations. The method is tested with three nonlinear chaotic dynamical systems in which the integer-order derivative is modeled with the proposed fractional-order case. Simulation result for different $\alpha$ values in $(0,1]$ is presented.


翻译:本文将考虑采用具有非本地和非本地特性的阿坦加纳-巴莱阿努衍生物的阿坦加纳-巴什福思方法新配制分数版的数学分析。我们采用固定点理论和近似方法,通过一般的两部分时间偏差方程来证明解决办法的存在和独特性。该方法由三种非线性混乱动态系统测试,其中整数序列衍生物与拟议的分数顺序立案建模。提出了以美元(0,1美元)计算不同价值的模拟结果。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Normalizing Flows入门(上)
AINLP
8+阅读 · 2020年8月1日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
虚构的对抗,GAN with the wind
全球人工智能
4+阅读 · 2017年10月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月13日
VIP会员
相关资讯
Normalizing Flows入门(上)
AINLP
8+阅读 · 2020年8月1日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
虚构的对抗,GAN with the wind
全球人工智能
4+阅读 · 2017年10月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员