This article introduces a weak Galerkin (WG) finite element method for linear elasticity interface problems on general polygonal/ployhedra partitions. The developed WG method has been proved to be stable and accurate with optimal order error estimates in the discrete $H^1$ norm. Some numerical experiments are conducted to verify the efficiency and accuracy of the proposed WG method.
翻译:本条对普通多边形/普罗维赫德拉分区线性弹性界面问题引入了微弱的Galerkin(WG)有限元素法,已经证明开发的WG方法是稳定和准确的,根据离散值$H$1美元标准的最佳顺序误差估计数,进行了一些数字实验,以核实拟议工作组方法的效率和准确性。