This paper studies properties of binary runlength-limited sequences with additional constraints on their Hamming weight and/or their number of runs of identical symbols. An algebraic and a probabilistic (entropic) characterization of the exponential growth rate of the number of such sequences, i.e., their information capacity, are obtained by using the methods of multivariate analytic combinatorics, and properties of the capacity as a function of its parameters are stated. The second-order term in the asymptotic expansion of the rate of these sequences is also given, and the typical values of the relevant quantities are derived. Several applications of the results are illustrated, including bounds on codes for weight-preserving and run-preserving channels (e.g., the run-preserving insertion-deletion channel), a sphere-packing bound for channels with sparse error patterns, and the asymptotics of constant-weight sub-block constrained sequences. In addition, the asymptotics of a closely related notion -- $ q $-ary sequences with fixed Manhattan weight -- is briefly discussed, and an application in coding for molecular timing channels is illustrated.


翻译:本文研究二进制的有限长度序列的特性,这些序列的重量和/或其相同符号的运行次数受到额外限制。对此类序列数的指数增长率的代数和概率(机率)定性,即其信息能力,是通过使用多变量解析组合器的方法获得的,其能力特性是其参数的函数。还说明了这些序列速度的无序扩展的第二阶词,并得出了相关数量的典型值。结果的几种应用,包括保留重量和运行保存通道的编码(如运行-保留插入-删除通道)的界限,对差错模式稀散的通道的外层包装,以及固定重量子块限制序列的设置。此外,对一个密切相关的概念 -- -- $ q $- Q-ary序列与固定重量的混合音序的设置,作了简要讨论,并展示了分子时间段的应用。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
专知会员服务
52+阅读 · 2021年6月30日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
专知会员服务
62+阅读 · 2020年3月4日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月15日
Arxiv
0+阅读 · 2022年2月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员