For a finite group $G$, the size of a minimum generating set of $G$ is denoted by $d(G)$. Given a finite group $G$ and an integer $k$, deciding if $d(G)\leq k$ is known as the minimum generating set (MIN-GEN) problem. A group $G$ of order $n$ has generating set of size $\lceil \log_p n \rceil$ where $p$ is the smallest prime dividing $n=|G|$. This fact is used to design an $n^{\log_p n+O(1)}$-time algorithm for the group isomorphism problem of groups specified by their Cayley tables (attributed to Tarjan by Miller, 1978). The same fact can be used to give an $n^{\log_p n+O(1)}$-time algorithm for the MIN-GEN problem. We show that the MIN-GEN problem can be solved in time $n^{(1/4)\log_p n+O(1)}$ for general groups given by their Cayley tables. This runtime incidentally matches with the runtime of the best known algorithm for the group isomorphism problem. We show that if a group $G$, given by its Cayley table, is the product of simple groups then a minimum generating set of $G$ can be computed in time polynomial in $|G|$. Given groups $G_i$ along with $d(G_i)$ for $i\in [r]$ the problem of computing $d(\Pi_{i\in[r]} G_i)$ is nontrivial. As a consequence of our result for products of simple groups we show that this problem also can be solved in polynomial time for Cayley table representation. For the MIN-GEN problem for permutation groups, to the best of our knowledge, no significantly better algorithm than the brute force algorithm is known. For an input group $G\leq S_n$, the brute force algorithm runs in time $|G|^{O(n)}$ which can be $2^{\Omega(n^2)}$. We show that if $G\leq S_n$ is a primitive permutation group then the MIN-GEN problem can be solved in time quasi-polynomial in $n$. We also design a $\mathrm{DTIME}(2^n)$ algorithm for computing a minimum generating set of permutation groups all of whose non-abelian chief factors have bounded orders.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员