Medical dialogue information extraction is becoming an increasingly significant problem in modern medical care. It is difficult to extract key information from electronic medical records (EMRs) due to their large numbers. Previously, researchers proposed attention-based models for retrieving features from EMRs, but their limitations were reflected in their inability to recognize different categories in medical dialogues. In this paper, we propose a novel model, Expert System and Attention for Labelling (ESAL). We use mixture of experts and pre-trained BERT to retrieve the semantics of different categories, enabling the model to fuse the differences between them. In our experiment, ESAL was applied to a public dataset and the experimental results indicated that ESAL significantly improved the performance of Medical Information Classification.


翻译:医学对话信息提取正在成为现代医疗护理中一个日益严重的问题,由于电子医疗记录数量众多,很难从电子医疗记录中提取关键信息,以前,研究人员提出了从电子医疗记录中提取特征的以关注为基础的模型,但其局限性反映在他们无法在医疗对话中识别不同类别。在本论文中,我们提出了一个新的模型,即专家系统和标签注意(ESAL)。我们使用专家与经过预先培训的BERT混合的方法检索不同类别的语义,使模型能够融合它们之间的差异。在我们的实验中,ESAL被用于公共数据集,实验结果表明,ESAL大大改进了医疗信息分类的绩效。</s>

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员