Minimum flow decomposition (MFD) -- the problem of finding a minimum set of weighted source-to-sink paths that perfectly decomposes a flow -- is a classical problem in Computer Science, and variants of it are powerful models in different fields such as Bioinformatics and Transportation. Even on acyclic graphs, the problem is NP-hard, and most practical solutions have been via heuristics or approximations. While there is an extensive body of research on acyclic graphs, currently, there is no \emph{exact} solution on graphs with cycles. In this paper, we present the first ILP formulation for three natural variants of the MFD problem in graphs with cycles, asking for a decomposition consisting only of weighted source-to-sink paths or cycles, trails, and walks, respectively. On three datasets of increasing levels of complexity from both Bioinformatics and Transportation, our approaches solve any instance in under 10 minutes. Our implementations are freely available at github.com/algbio/MFD-ILP.
翻译:最低流分解(MFD) -- -- 找到一套最起码的加权源对汇路径,完全分解流动的问题 -- -- 是一个计算机科学的典型问题,其变种是生物信息学和运输等不同领域的强型模型。即使在环状图上,问题也是硬化的,而且大多数实际解决办法都是通过超光速或近似法解决的。虽然对环状图进行了大量研究,但目前,在循环图上没有找到 emph{exact} 解决方案。在本文中,我们用循环图解介出三种MFD问题自然变种的首个ILP配方,要求进行分解,仅由加权源对汇路径或循环、轨迹和行走组成。关于生物信息学和运输的日益复杂程度的三个数据集,我们在10分钟内就能找到任何解决办法。我们的实施方法可以在 githhub.com/algbio/MFD-ILP上自由查阅。