Domain shift, the mismatch between training and testing data characteristics, causes significant degradation in the predictive performance in multi-source imaging scenarios. In medical imaging, the heterogeneity of population, scanners and acquisition protocols at different sites presents a significant domain shift challenge and has limited the widespread clinical adoption of machine learning models. Harmonization methods which aim to learn a representation of data invariant to these differences are the prevalent tools to address domain shift, but they typically result in degradation of predictive accuracy. This paper takes a different perspective of the problem: we embrace this disharmony in data and design a simple but effective framework for tackling domain shift. The key idea, based on our theoretical arguments, is to build a pretrained classifier on the source data and adapt this model to new data. The classifier can be fine-tuned for intra-site domain adaptation. We can also tackle situations where we do not have access to ground-truth labels on target data; we show how one can use auxiliary tasks for adaptation; these tasks employ covariates such as age, gender and race which are easy to obtain but nevertheless correlated to the main task. We demonstrate substantial improvements in both intra-site domain adaptation and inter-site domain generalization on large-scale real-world 3D brain MRI datasets for classifying Alzheimer's disease and schizophrenia.


翻译:在医学成像中,不同地点的人口、扫描仪和采购协议的多样性是一个巨大的领域转移挑战,限制了广泛临床采用机器学习模式。 旨在了解与这些差异无关的数据的表达方式的统一方法是处理域转移的普遍工具,但通常导致预测准确性下降。本文从不同的角度看待问题:我们接受数据中的这种不协调性,设计一个处理域转移的简单而有效的框架。根据我们的理论论点,关键的想法是建立一个源数据预先训练的分类器,使这一模型适应新的数据。该分类器可以对现场内部领域适应进行微调。我们还可以处理我们无法在目标数据上使用地面图解标签的情况;我们展示如何利用辅助性任务来适应;这些任务采用诸如年龄、性别和种族等易于获得但与主要任务相关联的共变式方法。我们展示了在内部领域内地磁系统内部数据调整和大规模脑系统化方面的巨大改进。

0
下载
关闭预览

相关内容

CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Augmentation based unsupervised domain adaptation
Arxiv
0+阅读 · 2022年2月23日
Arxiv
2+阅读 · 2022年2月21日
Arxiv
8+阅读 · 2020年8月30日
VIP会员
相关资讯
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员