Motivated by a challenging tubular network segmentation task, this paper tackles two commonly encountered problems in biomedical imaging: Topological consistency of the segmentation, and limited annotations. We propose a topological score which measures both topological and geometric consistency between the predicted and ground truth segmentations, applied for model selection and validation. We apply our topological score in three scenarios: i. a U-net ii. a U-net pretrained on an autoencoder, and iii. a semisupervised U-net architecture, which offers a straightforward approach to jointly training the network both as an autoencoder and a segmentation algorithm. This allows us to utilize un-annotated data for training a representation that generalizes across test data variability, in spite of our annotated training data having very limited variation. Our contributions are validated on a challenging segmentation task, locating tubular structures in the fetal pancreas from noisy live imaging confocal microscopy.
翻译:本文以具有挑战性的管状网络分解任务为动力,处理生物医学成像中通常遇到的两个问题:分解的地形一致性和有限的说明。我们提出一个测量预测和地面真相分解的地形和几何一致性的表层评分,用于模型选择和验证。我们在三种假设中应用我们的表层评分:一. U-net i. U-net 在自动编码器上预先训练的U-net,三. 半监督的U-net结构,它为联合培训网络既作为自动编码器又作为分解算法提供了直截了当的方法。这使我们能够利用未附加说明的数据来培训一种代表,这种代表可以跨越测试数据变异性,尽管我们的附加说明的培训数据变化非常有限。我们的贡献在具有挑战性的分解任务上得到验证,即从噪音的活成像孔微镜中将管状结构定位在胚骨盆中。