In this work, we propose a fully coupled multiscale strategy for components made from short fiber reinforced composites, where each Gauss point of the macroscopic finite element model is equipped with a deep material network (DMN) which covers the different fiber orientation states varying within the component. These DMNs need to be identified by linear elastic precomputations on representative volume elements, and serve as high-fidelity surrogates for full-field simulations on microstructures with inelastic constituents. We discuss how to extend direct DMNs to account for varying fiber orientation, and propose a simplified sampling strategy which significantly speeds up the training process. To enable concurrent multiscale simulations, evaluating the DMNs efficiently is crucial. We discuss dedicated techniques for exploiting sparsity and high-performance linear algebra modules, and demonstrate the power of the proposed approach on an industrial-scale three-dimensional component. Indeed, the DMN is capable of accelerating two-scale simulations significantly, providing possible speed-ups of several magnitudes.
翻译:在这项工作中,我们为短纤维强化复合材料制成的部件提出了一个充分结合的多尺度战略,其中宏观微量元素模型的每个高斯点都配备了一个深度材料网络(DMN),覆盖成分内不同的纤维取向状态。这些DMN需要通过对具有代表性的体积元素进行线性弹性预断来识别,并用作具有无弹性成分的微结构全场模拟的高纤维代孕。我们讨论如何将直接DMN扩大到对不同纤维取向的考虑,并提议一个大大加快培训过程的简化取样战略。为了能够同时进行多尺度的模拟,对DMNS进行高效率的评估是至关重要的。我们讨论的是利用宽度和高性能直线性代数模块的专门技术,并展示拟议的在工业规模三维组成部分上的方法的力量。事实上,DMNM能够大大加快两种规模的模拟,提供几级的可能的加速速度。