Large Pre-trained Language Models (PLM) have become the most desirable starting point in the field of NLP, as they have become remarkably good at solving many individual tasks. Despite such success, in this paper, we argue that current paradigms of working with PLMs are neglecting a critical aspect of modeling human intelligence: functional compositionality. Functional compositionality - the ability to compose learned tasks - has been a long-standing challenge in the field of AI (and many other fields) as it is considered one of the hallmarks of human intelligence. An illustrative example of such is cross-lingual summarization, where a bilingual person (English-French) could directly summarize an English document into French sentences without having to translate the English document or summary into French explicitly. We discuss why this matter is an important open problem that requires further attention from the field. Then, we show that current PLMs (e.g., GPT-2 and T5) don't have functional compositionality yet and it is far from human-level generalizability. Finally, we suggest several research directions that could push the field towards zero-shot functional compositionality of language models.


翻译:受过培训的大型语言模型(PLM)已成为国家语言模型(PLP)领域最理想的起点,因为这些模型在解决许多个人任务方面已经变得非常出色。尽管如此,我们在本文件中认为,目前与PLMS合作的模式忽视了模拟人类智能的一个关键方面:功能构成性。功能构成性(能够承担学到的任务)一直是AI(和许多其他领域)领域的一个长期挑战,因为它被认为是人类智慧的标志之一。这种特征的一个例证是跨语言汇总,双语人员(英语-法语)可以直接将英文文件总结成法文句子,而不必将英文文件或摘要明确翻译成法文。我们讨论为什么这个问题是一个重要的开放问题,需要该领域进一步注意。然后,我们表明目前的PLMS(例如GPT-2和T-5)还没有功能构成性,而且远离人类层面的通用性。最后,我们建议了若干研究方向,可以将这个领域推向语言模式的零端功能构成性。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
0+阅读 · 2023年4月26日
Arxiv
3+阅读 · 2023年4月25日
Arxiv
33+阅读 · 2022年12月20日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员