We present a massively parallel Lagrange decomposition method for solving 0-1 integer linear programs occurring in structured prediction. We propose a new iterative update scheme for solving the Lagrangean dual and a perturbation technique for decoding primal solutions. For representing subproblems we follow Lange et al. (2021) and use binary decision diagrams (BDDs). Our primal and dual algorithms require little synchronization between subproblems and optimization over BDDs needs only elementary operations without complicated control flow. This allows us to exploit the parallelism offered by GPUs for all components of our method. We present experimental results on combinatorial problems from MAP inference for Markov Random Fields, quadratic assignment and cell tracking for developmental biology. Our highly parallel GPU implementation improves upon the running times of the algorithms from Lange et al. (2021) by up to an order of magnitude. In particular, we come close to or outperform some state-of-the-art specialized heuristics while being problem agnostic.


翻译:我们提出了解决结构化预测中0-1整形线性程序的大规模平行拉格朗格分解方法。 我们提出了解决拉格兰格双向和分解原始解决方案的扰动技术的新的迭代更新方案。 为了代表子问题,我们遵循Lange等人(2021年)并使用二进制决定图(BDDs )。 我们的原始和双重算法要求子问题和对BDDs的优化很少同步,只需要简单的操作,而没有复杂的控制流。 这使我们能够利用GPUs为我们方法的所有组成部分提供的平行功能。 我们介绍了MAP对Markov随机场的推断、四进制任务和发育生物学的细胞跟踪的组合问题实验结果。 我们高度平行的GPU的运用在Lange等人(2021年)的算法运行时,通过一个程度的顺序得到了改进。 特别是, 我们接近或超越了某种状态的专业化的超音量技术,而同时又有问题。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
103+阅读 · 2020年3月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
3+阅读 · 2018年3月13日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员