Semantic segmentation methods typically perform per-pixel classification by assuming a fixed set of semantic categories. While they perform well on the known set, the network fails to learn the concept of objectness, which is necessary for identifying unknown objects. In this paper, we explore the potential of query-based mask classification for unknown object segmentation. We discover that object queries specialize in predicting a certain class and behave like one vs. all classifiers, allowing us to detect unknowns by finding regions that are ignored by all the queries. Based on a detailed analysis of the model's behavior, we propose a novel anomaly scoring function. We demonstrate that mask classification helps to preserve the objectness and the proposed scoring function eliminates irrelevant sources of uncertainty. Our method achieves consistent improvements in multiple benchmarks, even under high domain shift, without retraining or using outlier data. With modest supervision for outliers, we show that further improvements can be achieved without affecting the closed-set performance.
翻译:语义分解方法通常通过假设一套固定的语义分类来进行每像素分类。 虽然网络在已知的数据集上表现良好, 但网络无法了解对象性的概念, 而这是识别未知对象所必需的。 在本文中, 我们探索了未知对象分解的基于查询的遮罩分类潜力。 我们发现, 对象询问专门预测某类, 并且行为与所有分类方法一样, 能够通过查找被所有查询忽略的区域来探测未知。 根据对模型行为的详细分析, 我们提出了一个新奇的异常评分功能。 我们证明, 掩码分类有助于维护对象性, 并且拟议的评分功能消除了无关的不确定性源。 我们的方法在多个基准方面实现了一致的改进, 即使是在高域位转换下, 没有再培训或使用外部数据。 我们通过对外端的适度监督, 显示在不影响封闭性性能的情况下可以实现进一步的改进 。