We design a highly efficient architecture called Gated Convolutional Network with Hybrid Connectivity (HCGNet), which is equipped with the combination of local residual and global dense connectivity to enjoy their individual superiorities as well as attention-based gate mechanism to assist feature recalibration. To adapt our hybrid connectivity, we further propose a novel module which includes a squeeze cell for obtaining the compact features from input and then a multi-scale excitation cell attached an update gate to model the global context features for capturing long-range dependency based on multi-scale information. We also locate a forget gate on residual connectivity to decay the reused features, which can be aggergated with newly global context features to form the output that can facilitate effective feature exploration as well as re-exploitation to some extent. Moreover, the number of our proposed modules under dense connectivity can be quite fewer than classical DenseNet thus reducing considerable redundancy but with empirically better performance. On CIFAR-10/100 datasets, HCGNets significantly outperform state-of-the-art both human-designed and auto-searched networks with much fewer parameters. It can also consistently obtain better performance and interpretability than widely applied networks in practice on ImageNet dataset.


翻译:我们设计了一个高效的架构,称为Ged Convolution Conventional Net(HGNet),该架构配有本地剩余和全球密集连接的组合,以享受其个人优越性,并配有关注型门机制,协助对地貌进行校准。为了调整我们的混合连接,我们进一步提议了一个新模块,其中包括一个挤压电池,以便从输入中获取紧凑特征,然后是一个多尺度的外推单元,配上一个更新的大门,以模拟基于多尺度信息获取长期依赖性的全球背景特征。我们还找到了一个关于剩余连接的遗忘大门,以腐蚀再利用的功能,这些功能可能与新的全球环境特征相较错,形成产出,从而能够促进有效地探索地貌,并在一定程度上进行再利用。此外,在密集连接下拟议中的模块数量可能比典型的DenseNet要少得多,从而减少大量冗余,但以经验上更好的性。在CIFAR-10-100数据集中,HGNET大大超出人类设计和自动搜索的网络的状态,其参数要少得多。它还能够持续地获得比广泛应用的图像网络的更好表现和解释。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉领域顶会CVPR 2018 接受论文列表
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2019年3月15日
Arxiv
3+阅读 · 2017年10月1日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉领域顶会CVPR 2018 接受论文列表
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员