Recent studies have proposed integrating Chain-of-Thought (CoT) reasoning to further enhance the reliability of Code Language Models (CLMs) in generating code, a step-by-step approach that breaks down complex programming tasks into manageable sub-problems. Advances in this area have introduced CoT models, specifically designed to integrate CoT reasoning effectively into language models, achieving notable improvements in code generation. Despite these advancements, the security of CoT models has not been systematically studied. In this study, we aim to fill this gap by investigating the vulnerability of CoT models to backdoor injection in code generation tasks. To address this, we propose a model-agnostic backdoor attack method SABER (\textbf{S}elf-\textbf{A}ttention-\textbf{B}as\textbf{E}d backdoo\textbf{R}) based on the self-attention mechanism. SABER begins by selecting a malicious output as the backdoor using code mutation operations. It then identifies tokens most relevant to poisoned content by analyzing self-attention scores in the CodeBERT model. Finally, it applies semantic-preserving perturbations to generate adaptive and natural triggers. Our experiments on HumanEval-CoT and OpenEval-CoT test sets demonstrate that CoT models are susceptible to backdoor attacks via data poisoning. Taking the OpenEval-CoT dataset as an example, SABER achieves an ASR of 76.19%, representing an improvement of 14.29% over RIPPLe and a substantial 23.08% enhancement compared to BadPre. Further evaluations using ONION for automated detection and human studies reveal that SABER is stealthier and harder to detect, bypassing 77.27% of automated detection, with a human detection rate of just 3.17%. Our findings reveal that backdoors can be injected into CoT models to manipulate downstream code generation tasks.
翻译:暂无翻译