Musicologists use various labels to classify similar music styles under a shared title. But, non-specialists may categorize music differently. That could be through finding patterns in harmony, instruments, and form of the music. People usually identify a music genre solely by listening, but now computers and Artificial Intelligence (AI) can automate this process. The work on applying AI in the classification of types of music has been growing recently, but there is no evidence of such research on the Kurdish music genres. In this research, we developed a dataset that contains 880 samples from eight different Kurdish music genres. We evaluated two machine learning approaches, a Deep Neural Network (DNN) and a Convolutional Neural Network (CNN), to recognize the genres. The results showed that the CNN model outperformed the DNN by achieving 92% versus 90% accuracy.
翻译:音乐学家使用各种标签将类似的音乐风格分类在一个共同的标题下。 但是, 非专家可以对音乐进行不同的分类。 这可以通过寻找和谐、乐器和音乐形式的模式来进行。 人们通常仅仅通过监听来识别音乐类型, 但现在计算机和人工智能(AI)可以使这一过程自动化。 在音乐类型分类中应用AI的工作最近一直在增加, 但是没有证据表明对库尔德音乐类型进行了这样的研究。 在这项研究中,我们开发了一个数据集, 包含来自八个不同的库尔德音乐类型中的880个样本。 我们评估了两种机器学习方法, 深神经网络和革命神经网络(CNN), 以识别这些类型。 结果显示CNN模型在达到92%和90%的精确度方面超过了DNN。