In this paper, we create EMIR, the first-ever Music Information Retrieval dataset for Ethiopian music. EMIR is freely available for research purposes and contains 600 sample recordings of Orthodox Tewahedo chants, traditional Azmari songs and contemporary Ethiopian secular music. Each sample is classified by five expert judges into one of four well-known Ethiopian Kinits, Tizita, Bati, Ambassel and Anchihoye. Each Kinit uses its own pentatonic scale and also has its own stylistic characteristics. Thus, Kinit classification needs to combine scale identification with genre recognition. After describing the dataset, we present the Ethio Kinits Model (EKM), based on VGG, for classifying the EMIR clips. In Experiment 1, we investigated whether Filterbank, Mel-spectrogram, Chroma, or Mel-frequency Cepstral coefficient (MFCC) features work best for Kinit classification using EKM. MFCC was found to be superior and was therefore adopted for Experiment 2, where the performance of EKM models using MFCC was compared using three different audio sample lengths. 3s length gave the best results. In Experiment 3, EKM and four existing models were compared on the EMIR dataset: AlexNet, ResNet50, VGG16 and LSTM. EKM was found to have the best accuracy (95.00%) as well as the fastest training time. We hope this work will encourage others to explore Ethiopian music and to experiment with other models for Kinit classification.
翻译:在本文中,我们为埃塞俄比亚音乐创建了首创的音乐信息检索数据集EMIR, 这是首创的埃塞俄比亚音乐的音乐信息检索数据集。 EMIR免费提供, 包含600个东正教Tewahedo圣歌、传统阿兹马里歌曲和当代埃塞俄比亚世俗音乐的样本录音, 每个样本都由五名专家法官分类为四个著名的埃塞俄比亚基尼特人之一、 Tizita、 Bati、 Ambassel 和 Anchihoye。 每个基尼特人使用自己的五等级标准, 并有其自身的风格特征。 因此, 基尼特分类需要将比例识别与基因识别结合起来。 在描述数据集后, 我们展示了基于VGGG的Ethio Kinits模型(EKM) 样本, 用于对埃塞俄比亚现代音乐杂志剪辑。 在实验1中,我们调查了过滤库、 梅尔- 普特罗克罗格拉姆、 克雷玛、 梅尔- 或 频谱 Cepstral 系数(MCC) 是使用 EKTM 的最佳工作, 。 发现我们优等16 和实验 2, 因此采用了EKM 模型。 最有希望的模型。 模型,, MIC 和亚历 3, 和亚历 最精确的模型比 。