We present a novel mapping approach for WENO schemes through the use of an approximate constant mapping function which is constructed by employing an approximation of the classic signum function. The new approximate constant mapping function is designed to meet the overall criteria for a proper mapping function required in the design of the WENO-PM6 scheme. The WENO-PM6 scheme was proposed to overcome the potential loss of accuracy of the WENO-M scheme which was developed to recover the optimal convergence order of the WENO-JS scheme at critical points. Our new mapped WENO scheme, denoted as WENO-ACM, maintains almost all advantages of the WENO-PM6 scheme, including low dissipation and high resolution, while decreases the number of mathematical operations remarkably in every mapping process leading to a significant improvement of efficiency. The convergence rates of the WENO-ACM scheme have been shown through one-dimensional linear advection equation with various initial conditions. Numerical results of one-dimensional Euler equations for the Riemann problems, the Mach 3 shock-density wave interaction and the Woodward-Colella interacting blastwaves are improved in comparison with the results obtained by the WENO-JS, WENO-M and WENO-PM6 schemes. Numerical experiments with two-dimensional problems as the 2D Riemann problem, the shock-vortex interaction, the 2D explosion problem, the double Mach reflection and the forward-facing step problem modeled via the two dimensional Euler equations have been conducted to demonstrate the high resolution and the effectiveness of the WENO-ACM scheme. The WENO-ACM scheme provides significantly better resolution than the WENO-M scheme and slightly better resolution than the WENO-PM6 scheme, and compared to the WENO-M and WENO-PM6 schemes, the extra computational cost is reduced by more than 83% and 93%, respectively.


翻译:我们为WENO-PM6计划提出了一个新颖的绘图方法,其方法是使用一种近似常态绘图功能,该方法以近似经典符号函数的方式构建。新的近似常态绘图功能旨在满足设计WENO-PM6计划所需的适当绘图功能的总体标准。WENO-PM6计划旨在克服WENO-M计划可能丧失的准确性。WENO-M计划旨在恢复WENO-JS计划在关键点的最佳趋同顺序。我们的新绘制的WENO-ATM计划,以略微的 NO-ACM为标志,维持WENO-P6计划的几乎所有优势,包括低分解率和高分辨率,同时在每次绘图过程中明显减少数学操作的数量,从而大大提高效率。WENO-AC计划在各种初始条件下的一维度直线性对冲方程式组合,通过里曼问题的一维度EULM6模型和83马赫3振动脉冲波互动,以及WEWENO-D-NOD的双波比前波反射率计划得到了改进。

0
下载
关闭预览

相关内容

【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
16+阅读 · 2020年8月23日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【干货书】数值计算C编程,319页pdf,Numerical C
专知会员服务
69+阅读 · 2020年4月7日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月7日
VIP会员
相关资讯
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员