We analyze a fully discrete finite element numerical scheme for the Cahn-Hilliard-Stokes-Darcy system that models two-phase flows in coupled free flow and porous media. To avoid a well-known difficulty associated with the coupling between the Cahn-Hilliard equation and the fluid motion, we make use of the operator-splitting in the numerical scheme, so that these two solvers are decoupled, which in turn would greatly improve the computational efficiency. The unique solvability and the energy stability have been proved in~\cite{CHW2017}. In this work, we carry out a detailed convergence analysis and error estimate for the fully discrete finite element scheme, so that the optimal rate convergence order is established in the energy norm, i.e.,, in the $\ell^\infty (0, T; H^1) \cap \ell^2 (0, T; H^2)$ norm for the phase variables, as well as in the $\ell^\infty (0, T; H^1) \cap \ell^2 (0, T; H^2)$ norm for the velocity variable. Such an energy norm error estimate leads to a cancellation of a nonlinear error term associated with the convection part, which turns out to be a key step to pass through the analysis. In addition, a discrete $\ell^2 (0;T; H^3)$ bound of the numerical solution for the phase variables plays an important role in the error estimate, which is accomplished via a discrete version of Gagliardo-Nirenberg inequality in the finite element setting.
翻译:我们为Cahn-Hilliard-Stokes-Darcy系统分析一个完全离散的有限元素数字方案,这个系统以双阶段流动为模型,同时进行自由流和多孔介质。为了避免与Cahn-Hilliard方程式和流体运动的混合相关的众所周知的困难,我们在数字方案中使用操作员分裂法,这样这两个解开两个解密器,这反过来将大大提高计算效率。独特的溶解性和能源稳定性在 ⁇ cite{CHW2017}中得到了证明。在这项工作中,我们为完全离散的有限要素方案进行了详细的趋同和误差估计。因此,在能量规范中,在 $ell- infty (0, T; H%2) 中,最佳的趋同顺序顺序顺序顺序在 递增到 递增 递增 的数值( 0, T); 在“ liver2 ” 中, 递增 递增 以 递增 ral- coloral 标准 中, 将 递增 递增到 递增 递增 递增 递增 度 递增 度 的 度 度 度 度 递增 递增 。