We present a novel approach to Bayesian inference and general Bayesian computation that is defined through a sequential decision loop. Our method defines a recursive partitioning of the sample space. It neither relies on gradients nor requires any problem-specific tuning, and is asymptotically exact for any density function with a bounded domain. The output is an approximation to the whole density function including the normalisation constant, via partitions organised in efficient data structures. Such approximations may be used for evidence estimation or fast posterior sampling, but also as building blocks to treat a larger class of estimation problems. The algorithm shows competitive performance to recent state-of-the-art methods on synthetic and real-world problems including parameter inference for gravitational-wave physics.
翻译:我们提出了一种新颖的贝叶斯推论和一般贝叶斯计算方法,该方法通过一个连续的决定环来定义。我们的方法定义了样板空间的循环分割。它既不依赖梯度,也不要求任何特定问题的调整,而且对于任何带有捆绑域的密度函数来说,它是无症状的。输出是整个密度函数的近似值,包括正常化常数,通过在高效数据结构中组织的分割值。这种近似值可用于证据估计或快速的后方取样,同时也是处理较大类别估计问题的构件。算法显示了合成和现实世界问题的最新最先进的方法的竞争性性能,包括重力波物理学参数推导。