In behavioural testing, system functionalities underrepresented in the standard evaluation setting (with a held-out test set) are validated through controlled input-output pairs. Optimising performance on the behavioural tests during training (behavioural learning) would improve coverage of phenomena not sufficiently represented in the i.i.d. data and could lead to seemingly more robust models. However, there is the risk that the model narrowly captures spurious correlations from the behavioural test suite, leading to overestimation and misrepresentation of model performance -- one of the original pitfalls of traditional evaluation. In this work, we introduce BeLUGA, an analysis method for evaluating behavioural learning considering generalisation across dimensions of different granularity levels. We optimise behaviour-specific loss functions and evaluate models on several partitions of the behavioural test suite controlled to leave out specific phenomena. An aggregate score measures generalisation to unseen functionalities (or overfitting). We use BeLUGA to examine three representative NLP tasks (sentiment analysis, paraphrase identification and reading comprehension) and compare the impact of a diverse set of regularisation and domain generalisation methods on generalisation performance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员