Recent discoveries in Deep Neural Networks are allowing researchers to tackle some very complex problems such as image classification and audio classification, with improved theoretical and empirical justifications. This paper presents a novel scheme to incorporate the use of autoencoders in Fuzzy rule classifiers (FRC). Autoencoders when stacked can learn the complex non-linear relationships amongst data, and the proposed framework built towards FRC can allow users to input expert knowledge to the system. This paper further introduces four novel fine-tuning strategies for autoencoders to improve the FRC's classification and rule reduction performance. The proposed framework has been tested across five real-world benchmark datasets. Elaborate comparisons with over 15 previous studies, and across 10-fold cross validation performance, suggest that the proposed methods are capable of building FRCs which can provide state of the art accuracies.


翻译:深神经网络中最近发现的发现使研究人员能够解决一些非常复杂的问题,如图像分类和音频分类,并改进了理论和经验依据。本文件提出了一个在模糊规则分类器(FRC)中使用自动编码器的新计划。堆叠时自动编码器可以了解数据之间复杂的非线性关系,而为深神经网络建立的拟议框架可以让用户将专家知识输入系统。本文件还进一步介绍了四个新颖的自动编码器微调战略,以改进FRC的分类和规则削减性能。提议的框架已经经过五个真实世界基准数据集的测试。与以前15项以上的研究进行详细比较,并跨越10倍的交叉验证性能,表明拟议的方法能够建立能够提供艺术特征的FRC。

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
专知会员服务
64+阅读 · 2021年5月29日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
52+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
15+阅读 · 2019年6月25日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Text Classification using Capsules
Arxiv
3+阅读 · 2018年8月14日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Arxiv
15+阅读 · 2019年6月25日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Text Classification using Capsules
Arxiv
3+阅读 · 2018年8月14日
Arxiv
10+阅读 · 2018年3月23日
Top
微信扫码咨询专知VIP会员