This paper analyzes the effect of a discrete treatment Z on a duration T. The treatment is not randomly assigned. The confounding issue is treated using a discrete instrumental variable explaining the treatment and independent of the error term of the model. Our framework is nonparametric and allows for random right censoring. This specification generates a nonlinear inverse problem and the average treatment effect is derived from its solution. We provide local and global identification properties that rely on a nonlinear system of equations. We propose an estimation procedure to solve this system and derive rates of convergence and conditions under which the estimator is asymptotically normal. When censoring makes identification fail, we develop partial identification results. Our estimators exhibit good finite sample properties in simulations. We also apply our methodology to the Illinois Reemployment Bonus Experiment.
翻译:本文分析了离散治疗 Z 在 T 持续期间的效果 。 治疗不是随机指派的 。 处理混乱问题的方法是使用离散工具变量解释处理方法, 并且独立于模型的错误术语 。 我们的框架是非对称的, 允许随机右检查 。 此规格产生非线性反问题, 平均治疗效果来自其解决方案 。 我们提供依靠非线性方程系统的地方和全球识别属性 。 我们提出一个估算程序来解决这个系统, 并得出测算器是否正常的趋同率和条件 。 当检查导致识别失败时, 我们开发部分识别结果 。 我们的估测器在模拟中展示了良好的有限样本属性 。 我们还对伊利诺伊州重新雇用博纳斯实验应用了我们的方法 。