Large language models(LLMs) are currently at the forefront of the machine learning field, which show a broad application prospect but at the same time expose some risks of privacy leakage. We combined Fully Homomorphic Encryption(FHE) and provable security theory with Parameter-Efficient Fine-Tuning(PEFT) to propose an efficient and secure inference scheme for LLMs. More specially, we focus on pre-trained LLMs who rely on open-sourced base model and then fine-tuned with the private datasets by LoRA. This is a popular road-map for Vertical Domain Models such as LawGPT and BenTsao. We use two key technologies below. Firstly, we divide the whole model into the public part and the private part. The weights of public part are publicly accessible(e.g. the open-sourced base model) while the private part needs to be protected(e.g. the LoRA matrices). In this way, the overhead brought by computing on private data can be greatly reduced. Secondly, we propose a general method to transform a linear layer into another one which provides security against model extraction attacks and preserves its original functionality, which denotes as Private Linear Layer(PLL). Then we use this method on the LoRA matrices to make sure that the server protects their private weights without restricting the user's input. We also show that the difficulty of performing model extraction attacks for PLL can be generalized to the well-known hard problem Learning with Errors(LWE). Combing this method with FHE, we can protect user's input at the same time. This transform method can be applied to any linear layer to gain an extra protection against model extraction attacks. In this paper, we use the open-source model ChatGLM2-6B as the base model which is fine-tuned by LoRA. Experimental results show the inference efficiency of our scheme reaches 1.61s/token which shows that the scheme has good practicality.
翻译:暂无翻译