Despite the remarkable performance, Deep Neural Networks (DNNs) behave as black-boxes hindering user trust in Artificial Intelligence (AI) systems. Research on opening black-box DNN can be broadly categorized into post-hoc methods and inherently interpretable DNNs. While many surveys have been conducted on post-hoc interpretation methods, little effort is devoted to inherently interpretable DNNs. This paper provides a review of existing methods to develop DNNs with intrinsic interpretability, with a focus on Convolutional Neural Networks (CNNs). The aim is to understand the current progress towards fully interpretable DNNs that can cater to different interpretation requirements. Finally, we identify gaps in current work and suggest potential research directions.


翻译:尽管取得了显著的成绩,但深神经网络(DNN)作为黑箱的行为妨碍了用户对人工智能系统的信任。关于打开黑箱 DNN的研究可以大致分为热后方法和内在可解释的DNNs。虽然已经对热后解释方法进行了许多调查,但对内在可解释的DNNs却没有做出多少努力。本文件审查了现有开发具有内在可解释性的DNNs的方法,重点是进化神经网络。目的是了解目前朝着完全可解释的DNNs(能够满足不同的解释要求)所取得的进展。最后,我们找出当前工作中的差距,并提出潜在的研究方向。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【深度】可解释性与deep learning的发展
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
已删除
将门创投
3+阅读 · 2017年9月12日
Arxiv
49+阅读 · 2020年12月16日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Neural Approaches to Conversational AI
Arxiv
8+阅读 · 2018年12月13日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
4+阅读 · 2017年11月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【深度】可解释性与deep learning的发展
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
已删除
将门创投
3+阅读 · 2017年9月12日
相关论文
Top
微信扫码咨询专知VIP会员