Natural language BERTs are trained with language corpus in a self-supervised manner. Unlike natural language BERTs, vision language BERTs need paired data to train, which restricts the scale of VL-BERT pretraining. We propose a self-training approach that allows training VL-BERTs from unlabeled image data. The proposed method starts with our unified conditional model -- a vision language BERT model that can perform zero-shot conditional generation. Given different conditions, the unified conditional model can generate captions, dense captions, and even questions. We use the labeled image data to train a teacher model and use the trained model to generate pseudo captions on unlabeled image data. We then combine the labeled data and pseudo labeled data to train a student model. The process is iterated by putting the student model as a new teacher. By using the proposed self-training approach and only 300k unlabeled extra data, we are able to get competitive or even better performances compared to the models of similar model size trained with 3 million extra image data.
翻译:自然语言 BERT 以自我监督的方式进行语言保护培训。 与自然语言 BERT 不同, 视觉语言 BERT 需要配对数据来培训, 这限制了 VL- BERT 预培训的规模 。 我们提议了一种自我培训方法, 使 VL- BERT 培训能够从未贴标签的图像数据中学习。 拟议的方法从我们统一的有条件模型开始 -- -- 一种能够执行零发有条件生成的视觉语言 BERT 模型。 在不同的环境下, 统一的有条件模型可以产生标题、 密集的字幕甚至问题。 我们使用标签图像数据来培训教师模型, 并使用经过培训的模型来生成未贴标签的图像数据的假字幕。 我们随后将标签的数据和伪标签数据结合起来, 来培训学生模型。 通过将学生模型作为新教师来进行循环。 通过使用拟议的自我培训方法, 并且只有300k 个未贴标签的额外数据, 我们能够获得与经过300万个额外图像数据培训的类似模型相比的竞争甚至更好的表现。