Current efficient fine-tuning methods (e.g., adapters, prefix-tuning, etc.) have optimized conditional text generation via training a small set of extra parameters of the neural language model, while freezing the rest for efficiency. While showing strong performance on some generation tasks, they don't generalize across all generation tasks. In this work, we show that prompt based conditional text generation can be improved with simple and efficient methods that simulate modeling the discourse structure of human written text. We introduce two key design choices: First we show that a higher-level discourse structure of human written text can be modelled with \textit{hierarchical blocking} on prefix parameters that enable spanning different parts of the input and output text and yield more coherent output generations. Second, we propose sparse prefix tuning by introducing \textit{attention sparsity} on the prefix parameters at different layers of the network and learn sparse transformations on the softmax-function, respectively. We find that sparse attention enables the prefix-tuning to better control of the input contents (salient facts) yielding more efficient tuning of the prefix-parameters. Experiments on a wide-variety of text generation tasks show that structured design of prefix parameters can achieve comparable results to fine-tuning all parameters while outperforming standard prefix-tuning on all generation tasks even in low-resource settings.


翻译:目前有效的微调方法(例如,适配器、前置调等)已经优化了有条件的文本生成,通过培训神经语言模型的一小部分额外参数,优化了有条件的文本生成,同时将其余参数冻结在效率上。在显示某些生成任务的强效性的同时,它们不会在所有生成任务中一概而论。在这项工作中,我们表明,以模拟人类书面文本的谈话结构模拟简单而高效的方法可以改进基于快速的有条件文本生成。我们引入了两种关键设计选择:首先,我们表明,在前置参数上,可以仿制更高层次的人类书面文本表达结构,以\textit{hitrachical clocktfrought为模型,从而能够跨越输入和输出文本的不同部分,产生更一致的一代产出。第二,我们建议通过在网络不同层次引入前置参数上引入 & textitleitut{ative screaility,并学习软模功能的微调。我们发现,低调的注意力使得前置式调整能够更好地控制输入内容(即使是低调的低度的设置)前置中,甚至更精确的设置的设置的参数,从而可以使所有生成前的创建前的系统能显示所有结构化前制成前制成前的系统前制成。

1
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2022年2月13日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Paraphrase Generation with Deep Reinforcement Learning
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员