ntrusion Detection Systems (IDS) are widely employed to detect and mitigate external network security events. VANETs (Vehicle ad-hoc Networks) are evolving, especially with the development of Connected Autonomous Vehicles (CAVs). So, it is crucial to assess how traditional IDS approaches can be utilised for emerging technologies. To address this concern, our work presents a stacked ensemble learning approach for IDS, which combines multiple machine learning algorithms to detect threats more effectively than single algorithm methods. Using the CICIDS2017 and the VeReMi benchmark data sets, we compare the performance of our approach with existing machine learning methods and find that it is more accurate at identifying threats. Our method also incorporates hyperparameter optimization and feature selection to improve its performance further. Overall, our results suggest that stacked ensemble learning is a promising technique for enhancing the effectiveness of IDS.
翻译:暂无翻译