In this work we investigate the use of the Signature Transform in the context of Learning. Under this assumption, we advance a supervised framework that provides state-of-the-art classification accuracy with the use of very few labels without the need of credit assignment and with minimal or no overfitting. We leverage tools from harmonic analysis by the use of the signature and log-signature and use as a score function RMSE and MAE Signature and log-signature. We develop a closed-form equation to compute probably good optimal scale factors. Classification is performed at the CPU level orders of magnitude faster than other methods. We report results on AFHQ dataset, Four Shapes, MNIST and CIFAR10 achieving 100% accuracy on all tasks.
翻译:在这项工作中,我们调查了在学习背景下使用签名变换工具的情况。在这个假设下,我们推进了一个监督框架,提供最新的分类准确性,使用极少的标签而不需要信用分配,且不过分或不过分。我们通过使用签名和日记以及将RMSE和MAE签名和日记作为记分函数来利用和谐分析工具。我们开发了一个封闭式方程式方程式,以计算可能的最佳比例系数。分类在CPU级别上比其他方法更快地进行。我们报告了关于AFHQ数据集、4个形状、MNIST和CIFAR10的结果,所有任务都实现了100%的准确性。