We study the problem of estimating the left and right singular subspaces for a collection of heterogeneous random graphs with a shared common structure. We analyze an algorithm that first estimates the orthogonal projection matrices corresponding to these subspaces for each individual graph, then computes the average of the projection matrices, and finally finds the matrices whose columns are the eigenvectors corresponding to the $d$ largest eigenvalues of the sample averages. We show that the algorithm yields an estimate of the left and right singular vectors whose row-wise fluctuations are normally distributed around the rows of the true singular vectors. We then consider a two-sample hypothesis test for the null hypothesis that two graphs have the same edge probabilities matrices against the alternative hypothesis that their edge probabilities matrices are different. Using the limiting distributions for the singular subspaces, we present a test statistic whose limiting distribution converges to a central $\chi^2$ (resp. non-central $\chi^2$) under the null (resp. alternative) hypothesis. Finally, we adapt the theoretical analysis for multiple networks to the setting of distributed PCA; in particular, we derive normal approximations for the rows of the estimated eigenvectors using distributed PCA when the data exhibit a spiked covariance matrix structure.
翻译:我们为收集具有共同结构的多元随机图表,研究估算左和右单子空间的问题。我们分析一种算法,首先对每个图形的这些子空间对应的正方形投影矩阵进行估算,然后计算投影矩阵的平均值,最后发现其柱子为与样本平均值中美元最大电子元值相对的偏振元数的矩阵。我们显示算法产生对左和右单向矢量的估计,其行向波动通常分布在真实的单向矢量的行内。我们然后考虑对空假设进行两个模数假设的假设,即两个图形具有相同的边缘概率矩阵,而其他假设则表明其边缘概率矩阵不同。我们使用单一子空间的限值分布分布分布,我们给出一个测试统计,其限制分布范围在无效的(正反)假设下为中央值2美元(非中央值 $\chi ⁇ 2美元)。最后,我们考虑对多个网络的理论分析进行两个模范式假设,即两个图形具有相同的边缘概率矩阵,而其边缘概率矩阵则不同。我们用正常的CPA的基质结构的分布式结构进行理论分析,我们用正常的模型来计算。