We propose \textbf{JAWS}, a series of wrapper methods for distribution-free uncertainty quantification tasks under covariate shift, centered on our core method \textbf{JAW}, the \textbf{JA}ckknife+ \textbf{W}eighted with likelihood-ratio weights. JAWS also includes computationally efficient \textbf{A}pproximations of JAW using higher-order influence functions: \textbf{JAWA}. Theoretically, we show that JAW relaxes the jackknife+'s assumption of data exchangeability to achieve the same finite-sample coverage guarantee even under covariate shift. JAWA further approaches the JAW guarantee in the limit of either the sample size or the influence function order under mild assumptions. Moreover, we propose a general approach to repurposing any distribution-free uncertainty quantification method and its guarantees to the task of risk assessment: a task that generates the estimated probability that the true label lies within a user-specified interval. We then propose \textbf{JAW-R} and \textbf{JAWA-R} as the repurposed versions of proposed methods for \textbf{R}isk assessment. Practically, JAWS outperform the state-of-the-art predictive inference baselines in a variety of biased real world data sets for both interval-generation and risk-assessment auditing tasks.
翻译:我们提出\ textbf{ JAWS},这是一系列在可变式转换下用于无分配不确定性量化任务的包装方法,以我们的核心方法 \ textbf{JAW}为核心方法 \ textbf{JA}cknife+\ textbf{W} 以可能- 鼠标重量计价。 JAWS 还包含计算高效的\ textbf{A} 使用更高级影响函数对JAWS进行无分配不确定性量化的方法及其风险评估的保证。理论上,我们表明JAWA + 假设数据可交换性假设可以达到相同的有限抽样范围,即使是在可变式变式转换。 JAAAWA 进一步在抽样规模或影响函数顺序的限度内采用JAAA\\ a\ transial- refreformal droadal discoal: 估计真实标签在用户- 定义真实时间间隔内的可能性。我们随后提议将JA\\ a tripal- true- devidustrate dal dal vial dal viewd the dal viewd dal dal viewd the droview viewd the AAAAA\ be dald dald droviewd dald dald daldddd droviewddd daldddd droddddddddddddddd droviald droviewd droviewdd dssss) viewdddd 提出JA/AAAAAAAA\_ vialdddddddddddddddddddddddddddddddddddddalddddddddaldaldaldaldaldddddal_ vial vial_A\_ addddddddddddddaldal_A/A/A/A/A/A/A/A/AAA/A/A/A/A/A/A/A