Business process simulation is a well-known approach to estimate the impact of changes to a process with respect to time and cost measures -- a practice known as what-if process analysis. The usefulness of such estimations hinges on the accuracy of the underlying simulation model. Data-Driven Simulation (DDS) methods combine automated process discovery and enhancement techniques to learn process simulation models from event logs. Empirical studies have shown that, while DDS models adequately capture the observed sequences of activities and their frequencies, they fail to capture the temporal dynamics of real-life processes. In contrast, parallel work has shown that generative Deep Learning (DL) models are able to accurately capture such temporal dynamics. The drawback of these latter models is that users cannot alter them for what-if analysis due to their black-box nature. This paper presents a hybrid approach to learn process simulation models from event logs wherein a (stochastic) process model is extracted from a log using automated process discovery and enhancement techniques, and this model is then combined with a DL model to generate timestamped event sequences (traces). An experimental evaluation shows that the resulting hybrid simulation models match the temporal accuracy of pure DL models, while retaining the what-if analysis capability of DDS approaches.


翻译:模拟业务过程是一种众所周知的方法,用以估计时间和成本计量过程变化的影响 -- -- 一种被称为 " 如果进程分析 " 的做法。这种估计的有用性取决于基本模拟模型的准确性。数据驱动模拟(DDS)方法结合了自动过程发现和增强技术,以便从事件日志中学习过程模拟模型。经验性研究表明,虽然DDS模型充分捕捉了所观测的活动序列及其频率,但它们未能捕捉实际生活过程的时间动态。相比之下,平行工作表明基因化深学习(DL)模型能够准确地捕捉这种时间动态。后一种模型的缺点是,用户无法改变这些模型,因为其黑盒性质而进行什么分析。本文介绍了一种混合方法,从事件日志中学习过程模拟模型,其中利用自动过程发现和强化技术从日志中提取一个(Stochacistic)进程模型,然后与DL模型相结合,以生成经过时间检查的事件序列(跟踪)。实验性评估显示,由此产生的混合深度模拟模型同时匹配了时间性DL分析能力。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
4+阅读 · 2018年12月3日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员