Enterprise information systems allow companies to maintain detailed records of their business process executions. These records can be extracted in the form of event logs, which capture the execution of activities across multiple instances of a business process. Event logs may be used to analyze business processes at a fine level of detail using process mining techniques. Among other things, process mining techniques allow us to discover a process model from an event log -- an operation known as automated process discovery. Despite a rich body of research in the field, existing automated process discovery techniques do not fully capture the concurrency inherent in a business process. Specifically, the bulk of these techniques treat two activities A and B as concurrent if sometimes A completes before B and other times B completes before A. Typically though, activities in a business process are executed in a true concurrency setting, meaning that two or more activity executions overlap temporally. This paper addresses this gap by presenting a refined version of an automated process discovery technique, namely Split Miner, that discovers true concurrency relations from event logs containing start and end timestamps for each activity. The proposed technique is also able to differentiate between exclusive and inclusive choices. We evaluate the proposed technique relative to existing baselines using 11 real-life logs drawn from different industries.


翻译:企业信息系统允许公司保存其业务流程执行的详细记录,这些记录可以以事件日志的形式提取,这种记录可以记录在一个业务流程的多种情况下开展活动的执行情况。事件日志可以用来使用过程采矿技术对业务流程进行细细程度的分析。除其他外,过程采矿技术使我们能够从事件日志中发现一个过程模型 -- -- 一种称为自动过程发现的行动。尽管实地有丰富的研究,但现有的自动过程发现技术并不能完全捕捉一个业务流程所固有的同源货币。具体地说,这些技术的大部分将两项活动A和B视为同时进行,有时在B之前完成,有时在B之前完成,有时在B之前完成,有时在B之前完成。通常在A之前完成。但通常,一个业务流程中的活动是在真正的同值货币环境下进行,这意味着两个或两个以上活动执行的时间重叠。本文通过提出一个完善的自动化过程发现技术,即Splet Miner,从含有每项活动开始和结束的时间戳的事件日志中发现真正的货币关系来弥补这一差距。拟议的技术还能够区分独家和包容性选择。我们用不同的历史日志评估了11个行业与现有基线之间的拟议技术。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
16+阅读 · 2021年5月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月2日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员