The IoT has made possible the development of increasingly driven services, like industrial IIoT services, that often deal with massive amounts of data. Meantime, as IIoT networks grow, the threats are even greater, and false data injection attacks (FDI) stand out as being one of the most aggressive. The majority of current solutions to handle this attack do not take into account the data validation, especially on the data clustering service. Aiming to advance on the issue, this work introduces CONFINIT, an intrusion detection system for mitigating FDI attacks on the data dissemination service performing in dense IIoT networks. CONFINIT combines watchdog surveillance and collaborative consensus strategies for assertively excluding various FDI attacks. The simulations showed that CONFINIT compared to DDFC increased by up to 35% - 40% the number of clusters without attackers in a gas pressure IIoT environment. CONFINIT achieved attack detection rates of 99%, accuracy of 90 and F1 score of 0.81 in multiple IIoT scenarios, with only up to 3.2% and 3.6% of false negatives and positives rates, respectively. Moreover, under two variants of FDI attacks, called Churn and Sensitive attacks, CONFINIT achieved detection rates of 100%, accuracy of 99 and F1 of 0.93 with less than 2% of false positives and negatives rates.


翻译:互联网使得发展日益驱动的服务成为可能,如工业的IIOT服务,这种服务往往涉及大量数据。与此同时,随着IIOT网络的增长,威胁甚至更大,虚假数据注入袭击是最具侵略性的。目前处理这一袭击的解决方案大多没有考虑到数据验证,特别是数据组合服务的数据验证。为了推进这一问题,这项工作引入了CONFINIT,这是一个入侵探测系统,用于减少对在密集的IIOT网络中进行的数据传播服务进行外国直接投资袭击。CONFINIT结合了监督监督和合作共识战略,以坚决排除各种外国直接投资袭击。模拟表明,与DDFC相比,CONFINIT增加了35%至40%的集群,而没有气压IIOT环境中攻击者的数量增加了。CONFINIT在多种IIT情景下实现了袭击检测率99%,准确度为90分和F1分0.81分,而虚假的负值和正值分别为3.6%。此外,在外国直接投资袭击的两个变式下,CUFINIT的检测率为100比0.9%和正率。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Defense Against Multi-target Trojan Attacks
Arxiv
0+阅读 · 2022年7月8日
Fairness and Bias in Robot Learning
Arxiv
0+阅读 · 2022年7月7日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员