This theoretical article examines how to construct human-like working memory and thought processes within a computer. There should be two working memory stores, one analogous to sustained firing in association cortex, and one analogous to synaptic potentiation in the cerebral cortex. These stores must be constantly updated with new representations that arise from either environmental stimulation or internal processing. They should be updated continuously, and in an iterative fashion, meaning that, in the next state, some items in the set of coactive items should always be retained. Thus, the set of concepts coactive in working memory will evolve gradually and incrementally over time. This makes each state is a revised iteration of the preceding state and causes successive states to overlap and blend with respect to the set of representations they contain. As new representations are added and old ones are subtracted, some remain active for several seconds over the course of these changes. This persistent activity, similar to that used in artificial recurrent neural networks, is used to spread activation energy throughout the global workspace to search for the next associative update. The result is a chain of associatively linked intermediate states that are capable of advancing toward a solution or goal. Iterative updating is conceptualized here as an information processing strategy, a computational and neurophysiological determinant of the stream of thought, and an algorithm for designing and programming artificial intelligence.


翻译:这一理论文章考察了如何在计算机中构建像人一样的工作记忆和思维过程。 应该有两个工作记忆库, 一个类似于关联皮层持续射击, 一个类似于大脑皮层中合成力增强。 这些存储室必须不断更新, 由环境刺激或内部处理产生新的外观。 它们应该不断更新, 以迭接的方式反复更新, 也就是说, 在下一个状态下, 一组共生物品中的某些物品应该永远保留。 因此, 一组在工作记忆中共同作用的概念会逐渐和逐步地演变。 这使得每个州都对前一状态进行订正, 并导致相继各州在它们包含的外观方面出现重叠和混合。 随着新的外观和旧的外观被减去, 有些在这些变化过程中仍然活跃几秒钟。 这种持续的活动, 类似于人工循环神经网络中所使用的活动, 被用来在全球工作空间中传播激活能量, 以寻找下一个关联性更新。 其结果是连接的中间国家链, 能够向解决方案或模型化的进化进化进化进化和进化进化的进化的进化过程和进化进化过程。 它的进化的进化进化的进化进化进化的进化和进化进化进化进化进化进化进化的进化进化进化进化进化进化进化进化进化进化进化进化的进化的进化进化的进化进化的进化进化进化的进化进化进的进的进化和进化进化进化进化进化进化进制。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
10+阅读 · 2020年11月26日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员