We present TOCH, a method for refining incorrect 3D hand-object interaction sequences using a data prior. Existing hand trackers, especially those that rely on very few cameras, often produce visually unrealistic results with hand-object intersection or missing contacts. Although correcting such errors requires reasoning about temporal aspects of interaction, most previous work focus on static grasps and contacts. The core of our method are TOCH fields, a novel spatio-temporal representation for modeling correspondences between hands and objects during interaction. The key component is a point-wise object-centric representation which encodes the hand position relative to the object. Leveraging this novel representation, we learn a latent manifold of plausible TOCH fields with a temporal denoising auto-encoder. Experiments demonstrate that TOCH outperforms state-of-the-art (SOTA) 3D hand-object interaction models, which are limited to static grasps and contacts. More importantly, our method produces smooth interactions even before and after contact. Using a single trained TOCH model, we quantitatively and qualitatively demonstrate its usefulness for 1) correcting erroneous reconstruction results from off-the-shelf RGB/RGB-D hand-object reconstruction methods, 2) de-noising, and 3) grasp transfer across objects. We will release our code and trained model on our project page at http://virtualhumans.mpi-inf.mpg.de/toch/
翻译:我们用之前的数据来改进不正确的 3D 手球互动序列的方法。 现有的手追踪器, 特别是那些依赖非常少的相机的手追踪器, 往往会以手球交叉点或缺失的联系人产生视觉不切实际的结果。 虽然纠正这些错误需要关于互动的时间方面的推理, 多数先前的工作重点是静态的掌握和接触。 我们的方法的核心是 TOCH 字段, 一种在互动期间模拟手与对象之间通信的新奇的时空代表器。 关键组成部分是一个点向的物体中心代表器, 它将与对象相对的位置编码。 利用这种新式代表器, 我们学习了具有视觉效果的 TOCH 字段, 并且有时间调色化的自动编码器。 实验表明, TOCH 超越了艺术状态( SONTA) 3D 手球互动模型, 仅限于静态的掌握和接触。 更重要的是, 我们的方法在接触之前和之后都会产生平稳的相互作用。 使用单一的托克/ 模型, 我们定量和定性地展示其有用性展示了1) 校正的外重建结果。