This work provides a formalization of Knowledge Graphs (KGs) as a new class of graphs that we denote doubly exchangeable attributed graphs, where node and pairwise (joint 2-node) representations must be equivariant to permutations of both node ids and edge (& node) attributes (relations & node features). Double-permutation equivariant KG representations open a new research direction in KGs. We show that this equivariance imposes a structural representation of relations that allows neural networks to perform complex logical reasoning tasks in KGs. Finally, we introduce a general blueprint for such equivariant representations and test a simple GNN-based double-permutation equivariant neural architecture that achieve 100% Hits@10 test accuracy in both the WN18RRv1 and NELL995v1 inductive KG completion tasks, and can accurately perform logical reasoning tasks that no existing methods can perform, to the best of our knowledge.
翻译:这项工作将知识图(KGs)正规化为一个新的图表类别,我们用它来表示可双重交换的可互换的图表,其中节点和配对(联合2-节点)的表示方式必须等同于节点id和边缘(和节点)属性(关系和节点特性)的变异性。双变等式 KG 表示式在 KGs 中打开了新的研究方向。 我们表明,这种等式要求对关系进行结构性的描述,使得神经网络能够在 KGs 中执行复杂的逻辑推理任务。 最后,我们为这种等式表达方式提出一个总体蓝图,并测试一个简单的基于 GNN 的双变异性内衣结构,在 W18RRv1 和 NELL995v1 的传导性 KG 完成任务中达到100%赫特@10 测试精度, 并且能够准确地完成任何现有方法都无法完成的逻辑推理任务。