Recent work has proven the effectiveness of transformers in many computer vision tasks. However, the performance of transformers in gaze estimation is still unexplored. In this paper, we employ transformers and assess their effectiveness for gaze estimation. We consider two forms of vision transformer which are pure transformers and hybrid transformers. We first follow the popular ViT and employ a pure transformer to estimate gaze from images. On the other hand, we preserve the convolutional layers and integrate CNNs as well as transformers. The transformer serves as a component to complement CNNs. We compare the performance of the two transformers in gaze estimation. The Hybrid transformer significantly outperforms the pure transformer in all evaluation datasets with less parameters. We further conduct experiments to assess the effectiveness of the hybrid transformer and explore the advantage of self-attention mechanism. Experiments show the hybrid transformer can achieve state-of-the-art performance in all benchmarks with pre-training.To facilitate further research, we release codes and models in https://github.com/yihuacheng/GazeTR.
翻译:最近的工作证明了变压器在许多计算机视觉任务中的有效性。然而,变压器在视觉估计中的性能仍未得到探索。在本文中,我们使用变压器并评估其效力以进行视觉估计。我们考虑两种形式的视觉变压器,它们是纯变压器和混合变压器。我们首先遵循流行的ViT,然后使用纯变压器来从图像中估计变压器的效能。另一方面,我们保护共变层,并结合CNN和变压器。变压器是补充CNN的成份。我们比较了两个变压器在视觉估计中的性能。混合变压器大大超过所有评价数据集中的纯变压器,但参数较少。我们进一步进行实验,评估混合变压器的功效,并探索自留机制的优势。实验显示,混合变压器在所有基准中都能通过预先培训达到状态性能。为了便利进一步研究,我们在https://github.com/yhuacheng/Gazetret。