Music relies heavily on repetition to build structure and meaning. Self-reference occurs on multiple timescales, from motifs to phrases to reusing of entire sections of music, such as in pieces with ABA structure. The Transformer (Vaswani et al., 2017), a sequence model based on self-attention, has achieved compelling results in many generation tasks that require maintaining long-range coherence. This suggests that self-attention might also be well-suited to modeling music. In musical composition and performance, however, relative timing is critically important. Existing approaches for representing relative positional information in the Transformer modulate attention based on pairwise distance (Shaw et al., 2018). This is impractical for long sequences such as musical compositions since their memory complexity for intermediate relative information is quadratic in the sequence length. We propose an algorithm that reduces their intermediate memory requirement to linear in the sequence length. This enables us to demonstrate that a Transformer with our modified relative attention mechanism can generate minute-long compositions (thousands of steps, four times the length modeled in Oore et al., 2018) with compelling structure, generate continuations that coherently elaborate on a given motif, and in a seq2seq setup generate accompaniments conditioned on melodies. We evaluate the Transformer with our relative attention mechanism on two datasets, JSB Chorales and Piano-e-Competition, and obtain state-of-the-art results on the latter.


翻译:音乐在很大程度上依赖重复来构建结构和含义。 自 自我参照发生在多个时间尺度上, 从元素到词组, 以及音乐整段内容的重复使用, 例如与ABA结构的片段。 变形器( Vaswani et al., 2017) 是一个基于自我注意的序列模型, 在许多需要保持远程一致性的一代任务中, 已经取得了令人信服的结果 。 这表明自我注意可能也非常适合模拟音乐。 然而, 在音乐构成和性能中, 相对时间尺度是极为重要的。 以对称距离( Shaw et al., 2018) 为基础, 代表变形器中相对位置信息的当前方法, 以及重新使用整段音频结构的音乐成份等长序列。 变形器( Vaswani et al., 201717) 由于中间相对信息的记忆复杂性在序列长度中是四分立的, 我们建议一种算法, 将其中间记忆要求降低到我的序列长度。 这让我们能够证明一个变形器与我们的相对关注机制可以产生一分秒的组合组成( 千个步骤, 四倍的步伐, 在Oore etal etal etal- lavequal laus) 结构上, 我们的变形的C- deal deal deal develillational deal deal deal se res res roal deal deal deal se se routs routs seal seal seal lacude se se lautal lautds sqs

5
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
23+阅读 · 2019年11月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
Arxiv
6+阅读 · 2019年7月11日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Star-Transformer
Arxiv
5+阅读 · 2019年2月28日
The Evolved Transformer
Arxiv
5+阅读 · 2019年1月30日
Arxiv
3+阅读 · 2018年11月13日
Arxiv
27+阅读 · 2018年4月12日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
23+阅读 · 2019年11月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
相关论文
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
Arxiv
6+阅读 · 2019年7月11日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Star-Transformer
Arxiv
5+阅读 · 2019年2月28日
The Evolved Transformer
Arxiv
5+阅读 · 2019年1月30日
Arxiv
3+阅读 · 2018年11月13日
Arxiv
27+阅读 · 2018年4月12日
Top
微信扫码咨询专知VIP会员