【导读】本文介绍了近期自然语言处理的一些论文,代码,博客及研究趋势等。
Fastai
Lesson 4 Practical Deep Learning for Coders
https://course.fast.ai/videos/?lesson
它会教你在fastai,语言模型是如何实现的。
LSTM:
即使transfomer更为流行,你还是有必要学习一些LSTM相关的知识, 因为在某些时候你仍然可以使用它,并且它是第一个在序列数据上取得较好较好效果的模型。
LSTM原始论文
https://www.bioinf.jku.at/publications/older/2604.pdf
详细解释了LSTM 模型的博客:Understanding LSTM Networks blog
https://colah.github.io/posts/2015-08-Understanding-LSTMs
AWD_LSTM
在LSTM的基础上增加了dropout等,克服原始LSTM的缺点。
论文:
https://arxiv.org/pdf/1708.02182.pdf
Salesforce 官方实现:
https://github.com/salesforce/awd-lstm-lm
fastai 实现:
https://github.com/fastai/fastai/blob/master/fastai/text/models/awd_lstm.py
Pointer模型
论文:
https://arxiv.org/pdf/1609.07843.pdf
官方视频介绍:
https://www.youtube.com/watch?v=Ibt8ZpbX3D8
Improving Neural Language Models with a continuous cache论文:
https://openreview.net/pdf?id=B14E5qee
Attention
只要记得 Attention is not all you need.
CS224n 视频从 1:00:55 开始,解释了attention.
https://www.youtube.com/watch?v=XXtpJxZBa2c
Attention is all you need 论文,同时提出了transformer。
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
官方视频介绍
https://www.youtube.com/watch?v=rBCqOTEfxvg
谷歌博客:
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
另一版本的transformer:Transformer-XL: Attentive Language Models Beyond a Fixed Length Contex paper
https://arxiv.org/pdf/1901.02860.pdf
谷歌官方博客Transformer-XL
https://ai.googleblog.com/2019/01/transformer-xl-unleashing-potential-of.html
Transformer-XL — Combining Transformers and RNNs Into a State-of-the-art Language Model
https://www.lyrn.ai/2019/01/16/transformer-xl-sota-language-model
Attention and Memory in Deep Learning and NLP blog
http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp
Attention and Augmented Recurrent Neural Networks blog
https://distill.pub/2016/augmented-rnns
Building the Mighty Transformer for Sequence Tagging in PyTorch: Part 1 blog
https://medium.com/@kolloldas/building-the-mighty-transformer-for-sequence-tagging-in-pytorch-part-i-a1815655cd8
Building the Mighty Transformer for Sequence Tagging in PyTorch: Part 2 blog
https://medium.com/@kolloldas/building-the-mighty-transformer-for-sequence-tagging-in-pytorch-part-ii-c85bf8fd145
多任务学习
An overview of Multi-Task Learning in deep neural networks
https://arxiv.org/pdf/1706.05098.pdf
The Natural Language Decathlon: Multitask Learning as Question Answering
https://arxiv.org/abs/1806.08730
Multi-Task Deep Neural Networks for Natural Language Understanding
https://arxiv.org/pdf/1901.11504.pdf
PyTorch
Pytorch 处理文本的教程
https://pytorch.org/tutorials/#text
最近的进展在
http://ruder.io/nlp-imagenet
ELMo
Deep Contextualized word representations论文
https://arxiv.org/abs/1802.05365
视频介绍:
https://vimeo.com/277672840
ULMFit:
Universal Language Model Fine-tuning for Text Classification论文:
https://arxiv.org/abs/1801.06146
Jeremy Howard 的博客
http://nlp.fast.ai/classification/2018/05/15/introducting-ulmfit.html
OpenAI GPT
GPT1 论文:
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
博客:
https://openai.com/blog/language-unsupervised
代码:
https://github.com/openai/finetune-transformer-lm
GPT2论文:
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
博客:
https://openai.com/blog/better-language-models
代码:
https://github.com/openai/gpt-2
GPT2 视频:
https://www.youtube.com/watch?v=T0I88NhR9M
BERT
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding论文:
https://arxiv.org/abs/1810.04805
谷歌官方博客:
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
Dissecting BERT Part 1: The Encoder 博客
https://medium.com/dissecting-bert/dissecting-bert-part-1-d3c3d495cdb3
Understading BERT Part 2: BERT Specifics 博客
https://medium.com/dissecting-bert/dissecting-bert-part2-335ff2ed9c73
Dissecting BERT Appendix: The Decoder博客:
https://medium.com/dissecting-bert/dissecting-bert-appendix-the-decoder-3b86f66b0e5f
原文链接:
https://medium.com/@kushajreal/how-to-become-an-expert-in-nlp-in-2019-1-945f4e9073c0
-END-
专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~
专知《深度学习:算法到实战》课程全部完成!540+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程