This paper studies the important problem of finding all $k$-nearest neighbors to points of a query set $Q$ in another reference set $R$ within any metric space. Our previous work defined compressed cover trees and corrected the key arguments in several past papers for challenging datasets. In 2009 Ram, Lee, March, and Gray attempted to improve the time complexity by using pairs of cover trees on the query and reference sets. In 2015 Curtin with the above co-authors used extra parameters to finally prove a time complexity for $k=1$. The current work fills all previous gaps and improves the nearest neighbor search based on pairs of new compressed cover trees. The novel imbalance parameter of paired trees allowed us to prove a better time complexity for any number of neighbors $k\geq 1$.
翻译:本文研究一个重要问题,即找到所有最近的近邻,找到一个查询点,在另一个参照点中设定$1,000美元。我们以前的工作定义了压缩覆盖树,纠正了过去几份论文中的关键论点,以挑战数据集。2009年,Ram, Lee, March和Gray试图通过在查询和参考组上使用两对覆盖树来改善时间复杂性。2015年,Curtin与上述共同作者一起使用额外参数,最终证明$1,000美元的时间复杂性。当前的工作填补了所有先前的空白,改进了以新压缩覆盖树两对为基础的最近的邻居搜索。配对树的新失衡参数让我们能够证明任何几个邻居的时间复杂性更高 $kgeq 1 。